
CSC D70: 
Compiler Optimization

Prof. Gennady Pekhimenko

University of Toronto

Winter 2018

The content of this lecture is adapted from the lectures of 
Todd Mowry and Phillip Gibbons



CSC D70: 
Compiler Optimization
Introduction, Logistics

Prof. Gennady Pekhimenko

University of Toronto

Winter 2018

The content of this lecture is adapted from the lectures of 
Todd Mowry and Phillip Gibbons



Summary
• Syllabus

– Course Introduction, Logistics, Grading

• Information Sheet

– Getting to know each other

• Assignments

• Learning LLVM

• Compiler Basics
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Syllabus: Who Are We?
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Course Information: Where to Get?

• Course Website: 
http://www.cs.toronto.edu/~pekhimenko/courses/cscd70-
w18/ 
– Announcements, Syllabus, Course Info, Lecture Notes, 

Tutorial Notes, Assignments

• Piazza: 
https://piazza.com/utoronto.ca/winter2018/cscd70/home
– Questions/Discussions, Syllabus, Announcements

• Blackboard
– Emails/announcements

• Your email
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Useful Textbook
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Introduction to Compilers

• What would you get out of this course?

• Structure of a Compiler

• Optimization Example
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What Do Compilers Do?

1. Translate one language into another
– e.g., convert C++ into x86 object code
– difficult for “natural” languages, but feasible for 

computer languages

2. Improve (i.e. “optimize”) the code
– e.g., make the code run 3 times faster

• or more energy efficient, more robust, etc.

– driving force behind modern processor design

11



How Can the Compiler Improve 
Performance?

Execution time = Operation count * Machine cycles per operation

• Minimize the number of operations 
– arithmetic operations, memory accesses

• Replace expensive operations with simpler ones
– e.g., replace 4-cycle multiplication with 1-cycle shift

• Minimize cache misses 
– both data and instruction accesses

• Perform work in parallel
– instruction scheduling within a thread
– parallel execution across multiple threads
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What Would You Get Out of This 
Course?

• Basic knowledge of existing compiler 
optimizations

• Hands-on experience in constructing 
optimizations within a fully functional research 
compiler

• Basic principles and theory for the development 
of new optimizations
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Structure of a Compiler

• Optimizations are performed on an “intermediate 
form”
– similar to a generic RISC instruction set

• Allows easy portability to multiple source languages, 
target machines
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Ingredients in a Compiler Optimization

• Formulate optimization problem 

– Identify opportunities of optimization

• applicable across many programs

• affect key parts of the program (loops/recursions)

• amenable to “efficient enough” algorithm

• Representation

– Must abstract essential details relevant to 
optimization
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Ingredients in a Compiler Optimization
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Ingredients in a Compiler Optimization

• Formulate optimization problem 
– Identify opportunities of optimization

• applicable across many programs
• affect key parts of the program (loops/recursions)
• amenable to “efficient enough” algorithm

• Representation
– Must abstract essential details relevant to optimization

• Analysis 
– Detect when it is desirable and safe to apply transformation 

• Code Transformation

• Experimental Evaluation (and repeat process)
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Representation: Instructions

• Three-address code
A := B op C

• LHS: name of variable e.g. x, A[t] (address of A + contents of t)
• RHS: value

• Typical instructions
A := B op C

A := unaryop B
A := B

GOTO s

IF A relop B GOTO s

CALL f

RETURN
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Optimization Example

• Bubblesort program that sorts an array A that is allocated in static 
storage:
– an element of A requires four bytes of a byte-addressed machine
– elements of A are numbered 1 through n (n is a variable)
– A[j] is in location &A+4*(j-1)

FOR i := n-1 DOWNTO 1 DO

FOR j := 1 TO i DO

IF A[j]> A[j+1] THEN BEGIN
temp := A[j];
A[j] := A[j+1];
A[j+1] := temp

END
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Translated Code

i := n-1

S5:  if i<1 goto s1

j := 1

s4:  if j>i goto s2

t1 := j-1

t2 := 4*t1

t3 := A[t2]   ;A[j]

t4 := j+1

t5 := t4-1

t6 := 4*t5

t7 := A[t6]   ;A[j+1]

if t3<=t7 goto s3

t8 :=j-1

t9 := 4*t8

temp := A[t9]  ;A[j]

t10 := j+1

t11:= t10-1

t12 := 4*t11

t13 := A[t12]  ;A[j+1]

t14 := j-1

t15 := 4*t14

A[t15] := t13 ;A[j]:=A[j+1]

t16 := j+1

t17 := t16-1

t18 := 4*t17

A[t18]:=temp  ;A[j+1]:=temp

s3: j := j+1

goto S4

S2: i := i-1

goto s5

s1:
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FOR i := n-1 DOWNTO 1 DO

FOR j := 1 TO i DO

IF A[j]> A[j+1] THEN BEGIN

temp := A[j];

A[j] := A[j+1];

A[j+1] := temp

END



Representation: a Basic Block

• Basic block = a sequence of 3-address statements 
– only the first statement can be reached from outside the block 

(no branches into middle of block)
– all the statements are executed consecutively if the first one is 

(no branches out or halts except perhaps at end of block)

• We require basic blocks to be maximal
– they cannot be made larger without violating the conditions

• Optimizations within a basic block are local optimizations
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Flow Graphs

• Nodes: basic blocks

• Edges: Bi -> Bj, iff Bj can follow Bi immediately in 
some execution
– Either first instruction of Bj is target of a goto at end of 

Bi

– Or, Bj physically follows Bi, which does not end in an 
unconditional goto.

• The block led by first statement of the program 
is the start, or entry node.
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Find the Basic Blocks
i := n-1

S5:  if i<1 goto s1

j := 1

s4:  if j>i goto s2

t1 := j-1

t2 := 4*t1

t3 := A[t2]   ;A[j]

t4 := j+1

t5 := t4-1

t6 := 4*t5

t7 := A[t6]   ;A[j+1]

if t3<=t7 goto s3

t8 :=j-1

t9 := 4*t8

temp := A[t9]  ;A[j]

t10 := j+1

t11:= t10-1

t12 := 4*t11

t13 := A[t12]  ;A[j+1]

t14 := j-1

t15 := 4*t14

A[t15] := t13 ;A[j]:=A[j+1]

t16 := j+1

t17 := t16-1

t18 := 4*t17

A[t18]:=temp  ;A[j+1]:=temp

s3: j := j+1

goto S4

S2: i := i-1

goto s5

s1:
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Basic Blocks from Example
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i := n-1

if i<1 goto out

j := 1

if j>i goto B5

i := i-1

goto B2

t1 := j-1

...

if t3<=t7 goto B8

t8 :=j-1

...

A[t18]=temp

j := j+1

goto B4

B1

B2

B3

B4

B5

B6

B7

B8

in

out



Partitioning into Basic Blocks

• Identify the leader of each basic block 

– First instruction 

– Any target of a jump 

– Any instruction immediately following a jump

• Basic block starts at leader & ends at 
instruction immediately before a leader (or 
the last instruction)
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Sources of Optimizations

• Algorithm optimization

• Algebraic optimization
A := B+0     =>     A := B

• Local optimizations 
– within a basic block -- across instructions

• Global optimizations 
– within a flow graph -- across basic blocks

• Interprocedural analysis
– within a program -- across procedures (flow graphs)
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Local Optimizations

• Analysis & transformation performed within a basic 
block

• No control flow information is considered
• Examples of local optimizations:

– local common subexpression elimination
analysis: same expression evaluated more than once in b. 
transformation: replace with single calculation

– local constant folding or elimination
analysis: expression can be evaluated at compile time
transformation: replace by constant, compile-time value

– dead code elimination
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i := n-1

S5:  if i<1 goto s1

j := 1

s4:  if j>i goto s2

t1 := j-1

t2 := 4*t1

t3 := A[t2]   ;A[j]

t4 := j+1

t5 := t4-1

t6 := 4*t5

t7 := A[t6]   ;A[j+1]

if t3<=t7 goto s3

Example
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t8 :=j-1

t9 := 4*t8

temp := A[t9]  ;A[j]

t10 := j+1

t11:= t10-1

t12 := 4*t11

t13 := A[t12]  ;A[j+1]

t14 := j-1

t15 := 4*t14

A[t15] := t13 ;A[j]:=A[j+1]

t16 := j+1

t17 := t16-1

t18 := 4*t17

A[t18]:=temp  ;A[j+1]:=temp

s3: j := j+1

goto S4

S2: i := i-1

goto s5

s1:



Example
B1: i := n-1

B2: if i<1 goto out

B3: j := 1

B4: if j>i goto B5

B6: t1 := j-1

t2 := 4*t1

t3 := A[t2]     ;A[j]

t6 := 4*j

t7 := A[t6]    ;A[j+1]

if t3<=t7 goto B8

B7: t8 :=j-1

t9 := 4*t8

temp := A[t9]  ;temp:=A[j]

t12 := 4*j

t13 := A[t12]  ;A[j+1]

A[t9]:= t13    ;A[j]:=A[j+1]

A[t12]:=temp   ;A[j+1]:=temp

B8: j := j+1

goto B4

B5: i := i-1

goto B2

out:
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(Intraprocedural) Global 
Optimizations
• Global versions of local optimizations

– global common subexpression elimination
– global constant propagation 
– dead code elimination

• Loop optimizations
– reduce code to be executed in each iteration
– code motion
– induction variable elimination

• Other control structures
– Code hoisting: eliminates copies of identical code on 

parallel paths in a flow graph to reduce code size.
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Example

B1: i := n-1

B2: if i<1 goto out

B3: j := 1

B4: if j>i goto B5

B6: t1 := j-1

t2 := 4*t1

t3 := A[t2]     ;A[j]

t6 := 4*j

t7 := A[t6]    ;A[j+1]

if t3<=t7 goto B8

B7: t8 :=j-1

t9 := 4*t8

temp := A[t9] ;temp:=A[j]

t12 := 4*j

t13 := A[t12] ;A[j+1]

A[t9]:= t13   ;A[j]:=A[j+1]

A[t12]:=temp  ;A[j+1]:=temp

B8: j := j+1

goto B4

B5: i := i-1

goto B2

out:
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Example (After Global CSE)

B1: i := n-1

B2: if i<1 goto out

B3: j := 1

B4: if j>i goto B5

B6: t1 := j-1

t2 := 4*t1

t3 := A[t2]     ;A[j]

t6 := 4*j

t7 := A[t6]    ;A[j+1]

if t3<=t7 goto B8

B7: A[t2] := t7        

A[t6] := t3

B8: j := j+1

goto B4

B5: i := i-1

goto B2

out:
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Induction Variable Elimination

• Intuitively
– Loop indices are induction variables

(counting iterations)
– Linear functions of the loop indices are also induction variables

(for accessing arrays)

• Analysis: detection of induction variable

• Optimizations
– strength reduction: 

• replace multiplication by additions

– elimination of loop index: 
• replace termination by tests on other induction variables
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Example

B1: i := n-1

B2: if i<1 goto out

B3: j := 1

B4: if j>i goto B5

B6: t1 := j-1

t2 := 4*t1

t3 := A[t2]     ;A[j]

t6 := 4*j

t7 := A[t6]    ;A[j+1]

if t3<=t7 goto B8

B7: A[t2] := t7        

A[t6] := t3    

B8: j := j+1

goto B4

B5: i := i-1

goto B2

out:
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Example (After IV Elimination)

B1:  i := n-1

B2:  if i<1 goto out

B3:  t2 := 0

t6 := 4

B4:  t19 := 4*I

if t6>t19 goto B5

B6:  t3 := A[t2]

t7 := A[t6]  ;A[j+1]

if t3<=t7 goto B8

B7:  A[t2] := t7

A[t6] := t3

B8:  t2 := t2+4

t6 := t6+4

goto B4

B5:  i := i-1

goto B2

out:
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Loop Invariant Code Motion

• Analysis

– a computation is done within a loop and

– result of the computation is the same as long as 
we keep going around the loop

• Transformation

– move the computation outside the loop
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Machine Dependent Optimizations

• Register allocation

• Instruction scheduling

• Memory hierarchy optimizations

• etc.
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Local Optimizations (More Details)

• Common subexpression elimination

– array expressions

– field access in records

– access to parameters
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Graph Abstractions

40

Example 1:
• grammar (for bottom-up parsing): 
E -> E + T | E – T | T, T -> T*F | F, F -> ( E ) | id 
• expression: a+a*(b-c)+(b-c)*d



Graph Abstractions
Example 1: an expression 

a+a*(b-c)+(b-c)*d

Optimized code:

t1 = b - c

t2 = a * t1

t3 = a + t2

t4 = t1 * d

t5 = t3 + t4
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How well do DAGs hold up across 
statements?

• Example 2

a = b+c;

b = a-d;

c = b+c;

d = a-d;

Is this optimized code correct?

a = b+c;

d = a-d;

c = d+c;
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Critique of DAGs

• Cause of problems
– Assignment statements
– Value of variable depends on TIME

• How to fix problem?
– build graph in order of execution 
– attach variable name to latest value

• Final graph created is not very interesting
– Key: variable->value mapping across time
– loses appeal of abstraction
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Value Number: Another Abstraction

• More explicit with respect to VALUES, and TIME

• each value has its own “number”
– common subexpression means same value number

• var2value: current map of variable to value 
– used to determine the value number of current expression

r1 + r2 => var2value(r1)+var2value(r2)

44
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Algorithm

Data structure:

VALUES = Table of

expression     //[OP, valnum1, valnum2}

var //name of variable currently holding expression

For each instruction (dst = src1 OP src2) in execution order

valnum1 = var2value(src1); valnum2 = var2value(src2);

IF [OP, valnum1, valnum2] is in VALUES

v = the index of expression

Replace instruction with CPY dst = VALUES[v].var

ELSE

Add 

expression = [OP, valnum1, valnum2]

var = dst

to VALUES

v = index of new entry; tv is new temporary for v

Replace instruction with: tv = VALUES[valnum1].var OP VALUES[valnum2].var

dst = tv;

set_var2value (dst, v)
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More Details

• What are the initial values of the variables?
– values at beginning of the basic block

• Possible implementations:
– Initialization: create “initial values” for all variables

– Or dynamically create them as they are used

• Implementation of VALUES and var2value: 
hash tables
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Example

Assign: a->r1,b->r2,c->r3,d->r4

a = b+c;     ADD t1 = r2,r3

CPY r1 = t1

b = a-d;     SUB t2 = r1,r4

CPY r2 = t2

c = b+c;     ADD t3 = r2,r3

CPY r3 = t3

d = a-d;     SUB t4 = r1,r4

CPY r4 = t4
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Conclusions

• Comparisons of two abstractions
– DAGs

– Value numbering

• Value numbering
– VALUE: distinguish between variables and VALUES

– TIME
• Interpretation of instructions in order of execution

• Keep dynamic state information
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