
CSC D70:
Compiler Optimization

Prof. Gennady Pekhimenko

University of Toronto

Winter 2018

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

CSC D70:
Compiler Optimization
Introduction, Logistics

Prof. Gennady Pekhimenko

University of Toronto

Winter 2018

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

Summary
• Syllabus

– Course Introduction, Logistics, Grading

• Information Sheet

– Getting to know each other

• Assignments

• Learning LLVM

• Compiler Basics

3

Syllabus: Who Are We?

4

Gennady (Gena) Pekhimenko

Assistant Professor, Instructor
pekhimenko@cs.toronto.edu

http://www.cs.toronto.edu/~pekhimenko/

Office: BA 5232 / IC 454

PhD from Carnegie Mellon

Worked at Microsoft Research, NVIDIA, IBM

Research interests: computer architecture, systems, machine
learning, compilers, hardware acceleration, bioinformatics

Computer Systems and Networking Group (CSNG)
EcoSystem Group

mailto:pekhimenko@cs.toronto.edu
http://www.cs.toronto.edu/~pekhimenko/

Bojian Zheng

MSc. Student, TA
bojian@cs.toronto.edu

Office: BA 5214 D02

BSc. from UofT ECE

Research interests: computer architecture, GPUs, machine
learning

Computer Systems and Networking Group (CSNG)
EcoSystem Group

mailto:bojian@cs.toronto.edu

Course Information: Where to Get?

• Course Website:
http://www.cs.toronto.edu/~pekhimenko/courses/cscd70-
w18/
– Announcements, Syllabus, Course Info, Lecture Notes,

Tutorial Notes, Assignments

• Piazza:
https://piazza.com/utoronto.ca/winter2018/cscd70/home
– Questions/Discussions, Syllabus, Announcements

• Blackboard
– Emails/announcements

• Your email

7

http://www.cs.toronto.edu/~pekhimenko/courses/cscd70-w18/
https://piazza.com/utoronto.ca/winter2018/cscd70/home

Useful Textbook

8

CSC D70:
Compiler Optimization
Compiler Introduction

Prof. Gennady Pekhimenko

University of Toronto

Winter 2018

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

Introduction to Compilers

• What would you get out of this course?

• Structure of a Compiler

• Optimization Example

10

What Do Compilers Do?

1. Translate one language into another
– e.g., convert C++ into x86 object code
– difficult for “natural” languages, but feasible for

computer languages

2. Improve (i.e. “optimize”) the code
– e.g., make the code run 3 times faster

• or more energy efficient, more robust, etc.

– driving force behind modern processor design

11

How Can the Compiler Improve
Performance?

Execution time = Operation count * Machine cycles per operation

• Minimize the number of operations
– arithmetic operations, memory accesses

• Replace expensive operations with simpler ones
– e.g., replace 4-cycle multiplication with 1-cycle shift

• Minimize cache misses
– both data and instruction accesses

• Perform work in parallel
– instruction scheduling within a thread
– parallel execution across multiple threads

12

Processor

memory

cache

What Would You Get Out of This
Course?

• Basic knowledge of existing compiler
optimizations

• Hands-on experience in constructing
optimizations within a fully functional research
compiler

• Basic principles and theory for the development
of new optimizations

13

Structure of a Compiler

• Optimizations are performed on an “intermediate
form”
– similar to a generic RISC instruction set

• Allows easy portability to multiple source languages,
target machines

14

Source Code Intermediate Form Object Code

C

C++

Java

Verilog

Front
End

Back
End

Optimizer

Alpha

SPARC

x86

IA-64

x86

ARM

SPARC

MIPS

Ingredients in a Compiler Optimization

• Formulate optimization problem

– Identify opportunities of optimization

• applicable across many programs

• affect key parts of the program (loops/recursions)

• amenable to “efficient enough” algorithm

• Representation

– Must abstract essential details relevant to
optimization

15

Ingredients in a Compiler Optimization

16

abstractionstatic statements
dynamic execution

graphs
matrices
integer programs

Mathematical
ModelPrograms

solutionsgenerated code

relations

Ingredients in a Compiler Optimization

• Formulate optimization problem
– Identify opportunities of optimization

• applicable across many programs
• affect key parts of the program (loops/recursions)
• amenable to “efficient enough” algorithm

• Representation
– Must abstract essential details relevant to optimization

• Analysis
– Detect when it is desirable and safe to apply transformation

• Code Transformation

• Experimental Evaluation (and repeat process)

17

Representation: Instructions

• Three-address code
A := B op C

• LHS: name of variable e.g. x, A[t] (address of A + contents of t)
• RHS: value

• Typical instructions
A := B op C

A := unaryop B
A := B

GOTO s

IF A relop B GOTO s

CALL f

RETURN

18

Optimization Example

• Bubblesort program that sorts an array A that is allocated in static
storage:
– an element of A requires four bytes of a byte-addressed machine
– elements of A are numbered 1 through n (n is a variable)
– A[j] is in location &A+4*(j-1)

FOR i := n-1 DOWNTO 1 DO

FOR j := 1 TO i DO

IF A[j]> A[j+1] THEN BEGIN
temp := A[j];
A[j] := A[j+1];
A[j+1] := temp

END

19

Translated Code

i := n-1

S5: if i<1 goto s1

j := 1

s4: if j>i goto s2

t1 := j-1

t2 := 4*t1

t3 := A[t2] ;A[j]

t4 := j+1

t5 := t4-1

t6 := 4*t5

t7 := A[t6] ;A[j+1]

if t3<=t7 goto s3

t8 :=j-1

t9 := 4*t8

temp := A[t9] ;A[j]

t10 := j+1

t11:= t10-1

t12 := 4*t11

t13 := A[t12] ;A[j+1]

t14 := j-1

t15 := 4*t14

A[t15] := t13 ;A[j]:=A[j+1]

t16 := j+1

t17 := t16-1

t18 := 4*t17

A[t18]:=temp ;A[j+1]:=temp

s3: j := j+1

goto S4

S2: i := i-1

goto s5

s1:

20

FOR i := n-1 DOWNTO 1 DO

FOR j := 1 TO i DO

IF A[j]> A[j+1] THEN BEGIN

temp := A[j];

A[j] := A[j+1];

A[j+1] := temp

END

Representation: a Basic Block

• Basic block = a sequence of 3-address statements
– only the first statement can be reached from outside the block

(no branches into middle of block)
– all the statements are executed consecutively if the first one is

(no branches out or halts except perhaps at end of block)

• We require basic blocks to be maximal
– they cannot be made larger without violating the conditions

• Optimizations within a basic block are local optimizations

21

Flow Graphs

• Nodes: basic blocks

• Edges: Bi -> Bj, iff Bj can follow Bi immediately in
some execution
– Either first instruction of Bj is target of a goto at end of

Bi

– Or, Bj physically follows Bi, which does not end in an
unconditional goto.

• The block led by first statement of the program
is the start, or entry node.

22

Find the Basic Blocks
i := n-1

S5: if i<1 goto s1

j := 1

s4: if j>i goto s2

t1 := j-1

t2 := 4*t1

t3 := A[t2] ;A[j]

t4 := j+1

t5 := t4-1

t6 := 4*t5

t7 := A[t6] ;A[j+1]

if t3<=t7 goto s3

t8 :=j-1

t9 := 4*t8

temp := A[t9] ;A[j]

t10 := j+1

t11:= t10-1

t12 := 4*t11

t13 := A[t12] ;A[j+1]

t14 := j-1

t15 := 4*t14

A[t15] := t13 ;A[j]:=A[j+1]

t16 := j+1

t17 := t16-1

t18 := 4*t17

A[t18]:=temp ;A[j+1]:=temp

s3: j := j+1

goto S4

S2: i := i-1

goto s5

s1:

23

Basic Blocks from Example

24

i := n-1

if i<1 goto out

j := 1

if j>i goto B5

i := i-1

goto B2

t1 := j-1

...

if t3<=t7 goto B8

t8 :=j-1

...

A[t18]=temp

j := j+1

goto B4

B1

B2

B3

B4

B5

B6

B7

B8

in

out

Partitioning into Basic Blocks

• Identify the leader of each basic block

– First instruction

– Any target of a jump

– Any instruction immediately following a jump

• Basic block starts at leader & ends at
instruction immediately before a leader (or
the last instruction)

25

26ALSU pp. 529-531

Sources of Optimizations

• Algorithm optimization

• Algebraic optimization
A := B+0 => A := B

• Local optimizations
– within a basic block -- across instructions

• Global optimizations
– within a flow graph -- across basic blocks

• Interprocedural analysis
– within a program -- across procedures (flow graphs)

27

Local Optimizations

• Analysis & transformation performed within a basic
block

• No control flow information is considered
• Examples of local optimizations:

– local common subexpression elimination
analysis: same expression evaluated more than once in b.
transformation: replace with single calculation

– local constant folding or elimination
analysis: expression can be evaluated at compile time
transformation: replace by constant, compile-time value

– dead code elimination

28

i := n-1

S5: if i<1 goto s1

j := 1

s4: if j>i goto s2

t1 := j-1

t2 := 4*t1

t3 := A[t2] ;A[j]

t4 := j+1

t5 := t4-1

t6 := 4*t5

t7 := A[t6] ;A[j+1]

if t3<=t7 goto s3

Example

29

t8 :=j-1

t9 := 4*t8

temp := A[t9] ;A[j]

t10 := j+1

t11:= t10-1

t12 := 4*t11

t13 := A[t12] ;A[j+1]

t14 := j-1

t15 := 4*t14

A[t15] := t13 ;A[j]:=A[j+1]

t16 := j+1

t17 := t16-1

t18 := 4*t17

A[t18]:=temp ;A[j+1]:=temp

s3: j := j+1

goto S4

S2: i := i-1

goto s5

s1:

Example
B1: i := n-1

B2: if i<1 goto out

B3: j := 1

B4: if j>i goto B5

B6: t1 := j-1

t2 := 4*t1

t3 := A[t2] ;A[j]

t6 := 4*j

t7 := A[t6] ;A[j+1]

if t3<=t7 goto B8

B7: t8 :=j-1

t9 := 4*t8

temp := A[t9] ;temp:=A[j]

t12 := 4*j

t13 := A[t12] ;A[j+1]

A[t9]:= t13 ;A[j]:=A[j+1]

A[t12]:=temp ;A[j+1]:=temp

B8: j := j+1

goto B4

B5: i := i-1

goto B2

out:

30

(Intraprocedural) Global
Optimizations
• Global versions of local optimizations

– global common subexpression elimination
– global constant propagation
– dead code elimination

• Loop optimizations
– reduce code to be executed in each iteration
– code motion
– induction variable elimination

• Other control structures
– Code hoisting: eliminates copies of identical code on

parallel paths in a flow graph to reduce code size.

31

Example

B1: i := n-1

B2: if i<1 goto out

B3: j := 1

B4: if j>i goto B5

B6: t1 := j-1

t2 := 4*t1

t3 := A[t2] ;A[j]

t6 := 4*j

t7 := A[t6] ;A[j+1]

if t3<=t7 goto B8

B7: t8 :=j-1

t9 := 4*t8

temp := A[t9] ;temp:=A[j]

t12 := 4*j

t13 := A[t12] ;A[j+1]

A[t9]:= t13 ;A[j]:=A[j+1]

A[t12]:=temp ;A[j+1]:=temp

B8: j := j+1

goto B4

B5: i := i-1

goto B2

out:

32

Example (After Global CSE)

B1: i := n-1

B2: if i<1 goto out

B3: j := 1

B4: if j>i goto B5

B6: t1 := j-1

t2 := 4*t1

t3 := A[t2] ;A[j]

t6 := 4*j

t7 := A[t6] ;A[j+1]

if t3<=t7 goto B8

B7: A[t2] := t7

A[t6] := t3

B8: j := j+1

goto B4

B5: i := i-1

goto B2

out:

33

Induction Variable Elimination

• Intuitively
– Loop indices are induction variables

(counting iterations)
– Linear functions of the loop indices are also induction variables

(for accessing arrays)

• Analysis: detection of induction variable

• Optimizations
– strength reduction:

• replace multiplication by additions

– elimination of loop index:
• replace termination by tests on other induction variables

34

Example

B1: i := n-1

B2: if i<1 goto out

B3: j := 1

B4: if j>i goto B5

B6: t1 := j-1

t2 := 4*t1

t3 := A[t2] ;A[j]

t6 := 4*j

t7 := A[t6] ;A[j+1]

if t3<=t7 goto B8

B7: A[t2] := t7

A[t6] := t3

B8: j := j+1

goto B4

B5: i := i-1

goto B2

out:

35

Example (After IV Elimination)

B1: i := n-1

B2: if i<1 goto out

B3: t2 := 0

t6 := 4

B4: t19 := 4*I

if t6>t19 goto B5

B6: t3 := A[t2]

t7 := A[t6] ;A[j+1]

if t3<=t7 goto B8

B7: A[t2] := t7

A[t6] := t3

B8: t2 := t2+4

t6 := t6+4

goto B4

B5: i := i-1

goto B2

out:

36

Loop Invariant Code Motion

• Analysis

– a computation is done within a loop and

– result of the computation is the same as long as
we keep going around the loop

• Transformation

– move the computation outside the loop

37

Machine Dependent Optimizations

• Register allocation

• Instruction scheduling

• Memory hierarchy optimizations

• etc.

38

Local Optimizations (More Details)

• Common subexpression elimination

– array expressions

– field access in records

– access to parameters

39

Graph Abstractions

40

Example 1:
• grammar (for bottom-up parsing):
E -> E + T | E – T | T, T -> T*F | F, F -> (E) | id
• expression: a+a*(b-c)+(b-c)*d

Graph Abstractions
Example 1: an expression

a+a*(b-c)+(b-c)*d

Optimized code:

t1 = b - c

t2 = a * t1

t3 = a + t2

t4 = t1 * d

t5 = t3 + t4

41

How well do DAGs hold up across
statements?

• Example 2

a = b+c;

b = a-d;

c = b+c;

d = a-d;

Is this optimized code correct?

a = b+c;

d = a-d;

c = d+c;

42

Critique of DAGs

• Cause of problems
– Assignment statements
– Value of variable depends on TIME

• How to fix problem?
– build graph in order of execution
– attach variable name to latest value

• Final graph created is not very interesting
– Key: variable->value mapping across time
– loses appeal of abstraction

43

Value Number: Another Abstraction

• More explicit with respect to VALUES, and TIME

• each value has its own “number”
– common subexpression means same value number

• var2value: current map of variable to value
– used to determine the value number of current expression

r1 + r2 => var2value(r1)+var2value(r2)

44

Variables Values
(dynamic)(static)

var2value
(current)

Algorithm

Data structure:

VALUES = Table of

expression //[OP, valnum1, valnum2}

var //name of variable currently holding expression

For each instruction (dst = src1 OP src2) in execution order

valnum1 = var2value(src1); valnum2 = var2value(src2);

IF [OP, valnum1, valnum2] is in VALUES

v = the index of expression

Replace instruction with CPY dst = VALUES[v].var

ELSE

Add

expression = [OP, valnum1, valnum2]

var = dst

to VALUES

v = index of new entry; tv is new temporary for v

Replace instruction with: tv = VALUES[valnum1].var OP VALUES[valnum2].var

dst = tv;

set_var2value (dst, v)

45

More Details

• What are the initial values of the variables?
– values at beginning of the basic block

• Possible implementations:
– Initialization: create “initial values” for all variables

– Or dynamically create them as they are used

• Implementation of VALUES and var2value:
hash tables

46

Example

Assign: a->r1,b->r2,c->r3,d->r4

a = b+c; ADD t1 = r2,r3

CPY r1 = t1

b = a-d; SUB t2 = r1,r4

CPY r2 = t2

c = b+c; ADD t3 = r2,r3

CPY r3 = t3

d = a-d; SUB t4 = r1,r4

CPY r4 = t4

47

Conclusions

• Comparisons of two abstractions
– DAGs

– Value numbering

• Value numbering
– VALUE: distinguish between variables and VALUES

– TIME
• Interpretation of instructions in order of execution

• Keep dynamic state information

48

CSC D70:
Compiler Optimization
Introduction, Logistics

Prof. Gennady Pekhimenko

University of Toronto

Winter 2018

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

